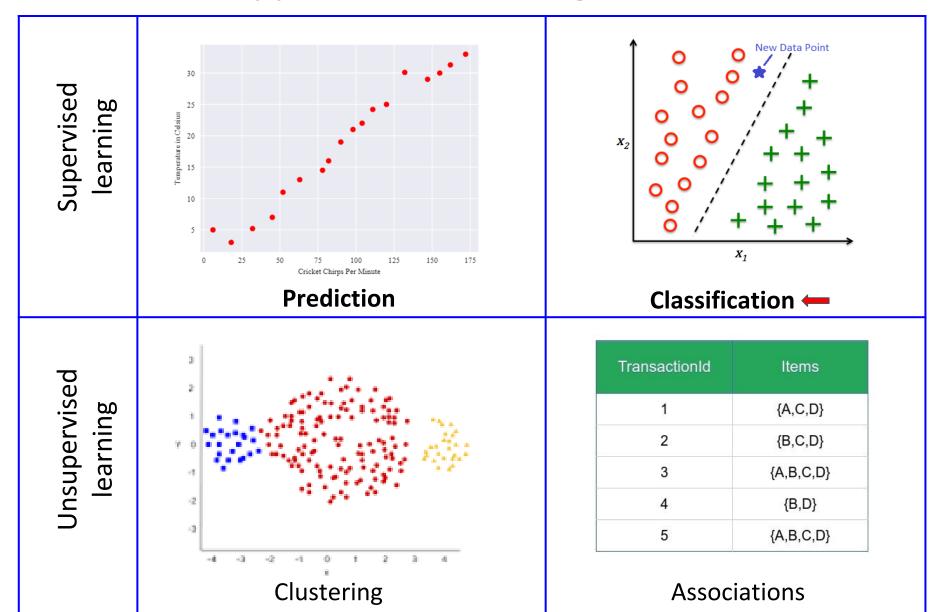
Decision trees

Lecture 02
By Marina Barsky

Types of learning tasks



Decision trees

- Decision support tool
- Input: a situation or an object described by a set of attributes
- Output: decision

- Supervised learning
- Tree induction algorithm
- Algorithm design issues
- Applications of decision trees

Decision tree – example

- Situation: restaurant
- Question: to leave or to stay?

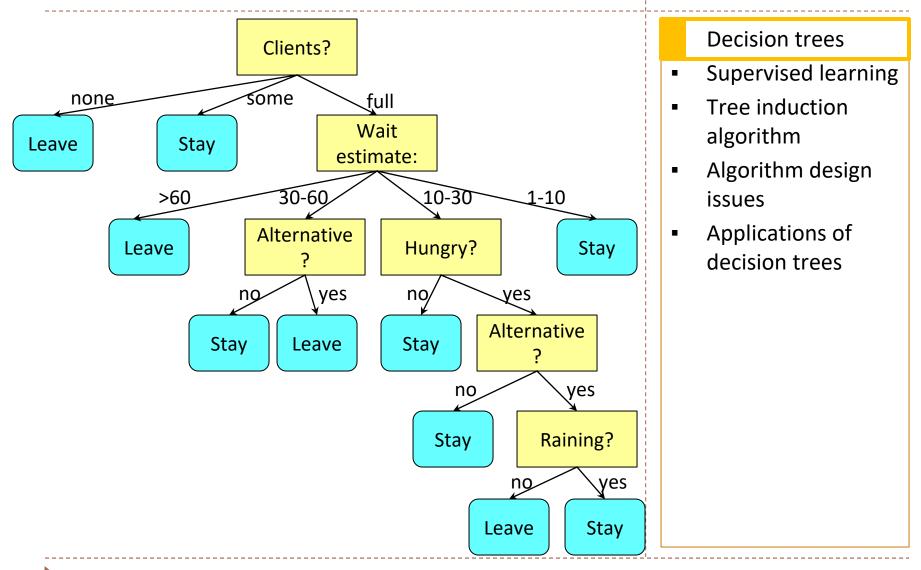
- Supervised learning
- Tree induction algorithm
- Algorithm design issues
- Applications of decision trees

Decision tree – select features

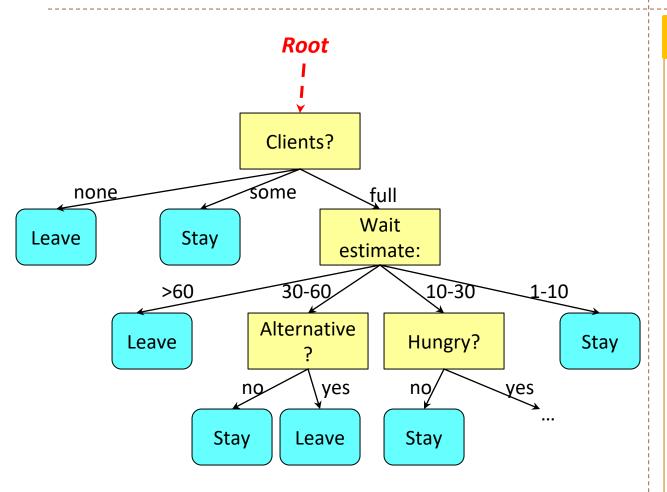
- Situation: restaurant
- Question: to leave or to stay?
- Set of important attributes:
 - Alternative restaurants: yes, no
 - Am I really hungry?: yes, no
 - Clients?: none, some, full
 - Is it raining?: yes, no
 - Wait estimate: 0-10, 10-30, 30-60, >60
 min

- Supervised learning
- Tree induction algorithm
- Algorithm design issues
- Applications of decision trees

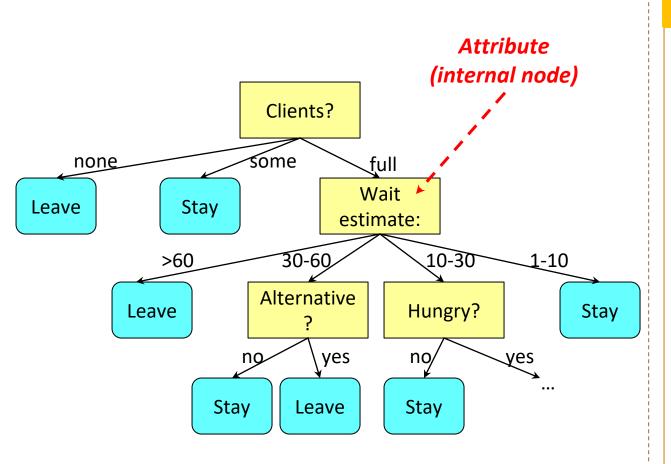
Decision tree - mental model



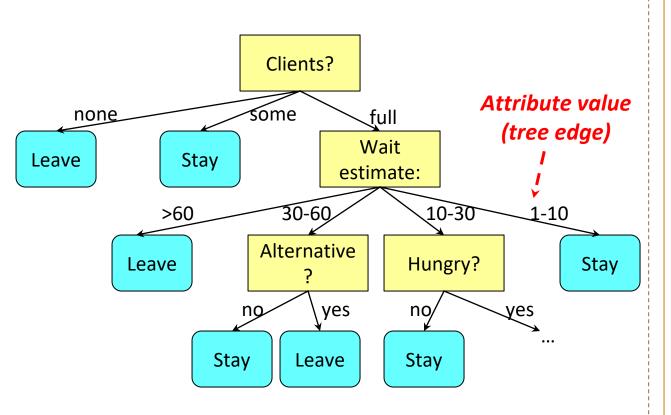
We build mental models for such situations



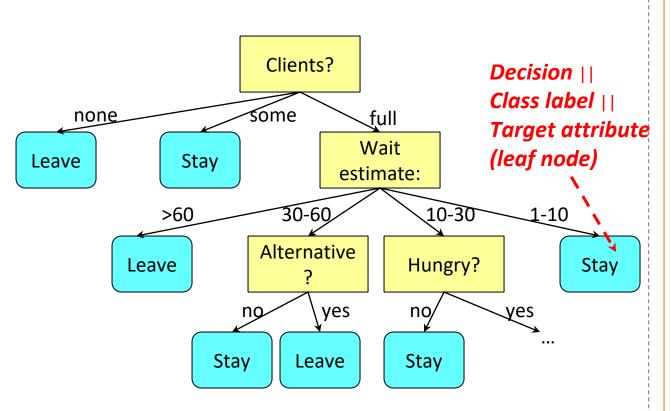
- Supervised learning
- Tree induction algorithm
- Algorithm design issues
- Applications of decision trees



- Supervised learning
- Tree induction algorithm
- Algorithm design issues
- Applications of decision trees



- Supervised learning
- Tree induction algorithm
- Algorithm design issues
- Applications of decision trees



- Supervised learning
- Tree induction algorithm
- Algorithm design issues
- Applications of decision trees

Decision trees as a Machine Learning task

- ML is looking for hidden patterns, structures, models
- Task: generate a decision tree model from tabular data for which the decision (class label) is known
- Teach computer to generate the model automatically, and then use the model to make an autonomous decision or to assist us with the decision

- Decision trees
 Supervised learning
- Tree induction algorithm
- Algorithm design issues
- Applications of decision trees

Decision tree induction

- Top-down recursive divide-and-conquer algorithm
 - First: an attribute is selected for root node and an outgoing edge (a branch) is created for each possible attribute value
 - Then: the instances are split into subsets (one for each branch extending from the node) based on the value of the selected attribute
 - Finally: the same procedure is repeated recursively for each branch, using only instances that reached that branch
- Process stops if all instances in the node have the same class label

- Decision trees
- Supervised learning

- Algorithm design issues
- Applications of decision trees

Example: Weather dataset

Outlook	Temp, C	Play
Sunny	30	Yes
Overcast	15	No
Sunny	16	Yes
Rainy	27	Yes
Overcast	25	Yes
Overcast	17	No
Rainy	17	No
Rainy	35	Yes

- Decision trees
- Supervised learning

- Algorithm design issues
- Applications of decision trees

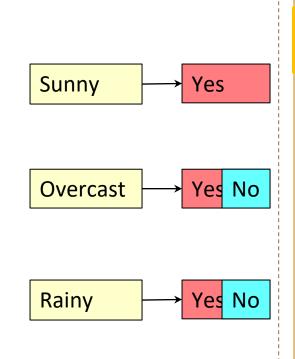
Categorizing numeric attributes

Temp		Temp
30		Hot
15		Chilly
16		Chilly
27	→	Warm
25		Warm
17		Chilly
17		Chilly
35		Hot

- Decision trees
- Supervised learning

- Algorithm design issues
- Applications of decision trees

Outlook	Temp	Play
Sunny	Hot	Yes
Overcast	Chilly	No
Sunny	Chilly	Yes
Rainy	Warm	Yes
Overcast	Warm	Yes
Overcast	Chilly	No
Rainy	Chilly	No
Rainy	Hot	Yes



Play (Yes, No)

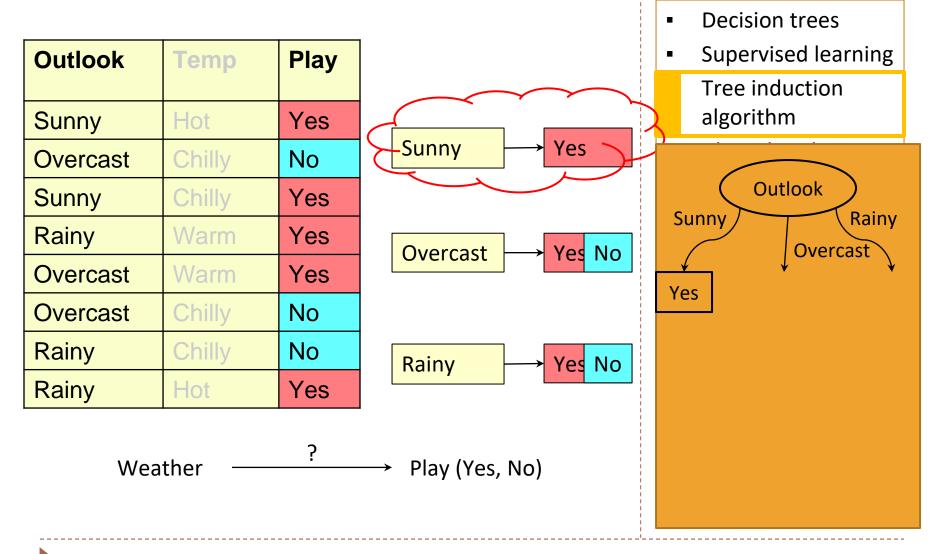
- Decision trees
- Supervised learning

Tree induction algorithm

- Algorithm design issues
- Applications of decision trees

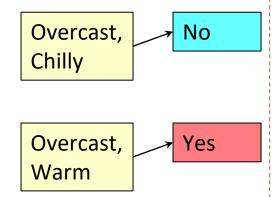
Observations about outlook

Weather



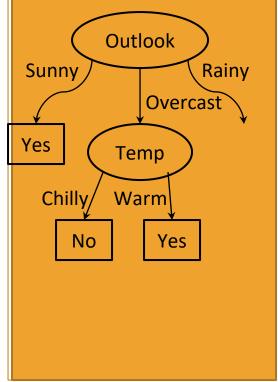
Observations about outlook: if it is sunny, always play

Outlook	Temp	Play
Sunny	Hot	Yes
Overcast	Chilly	No
Sunny	Chilly	Yes
Rainy	Warm	Yes
Overcast	Warm	Yes
Overcast	Chilly	No
Rainy	Chilly	No
Rainy	Hot	Yes



Weather → Play (Yes, No)

- Decision trees
- Supervised learning



Outlook	Temp	Play
Sunny	Hot	Yes
Overcast	Chilly	No
Sunny	Chilly	Yes
Rainy	Warm	Yes
Overcast	Warm	Yes
Overcast	Chilly	No
Rainy	Chilly	No
Rainy	Hot	Yes
Wea	ather —	Ş

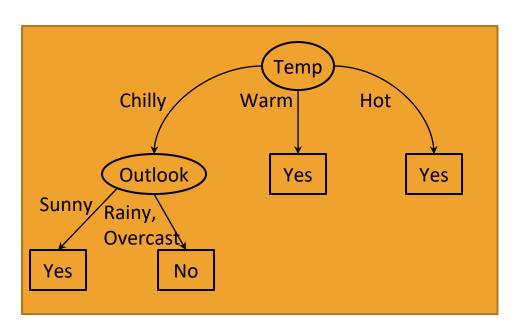
Decision trees Supervised learning Tree induction algorithm Outlook Sunny Rainy **Overcast** Yes Temp Temp Chilly Chilly/ Warm Warm Yes No Hot Yes No

Variations

 There are many different possible trees which fit the same data

- Decision trees
- Supervised learning

Tree induction algorithm

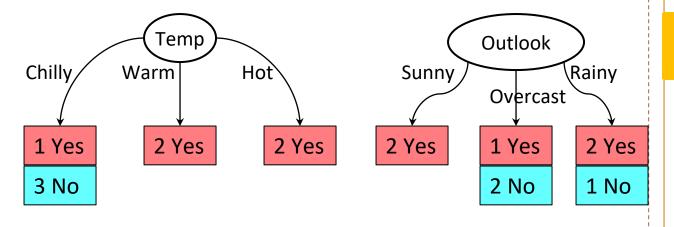


Outlook Sunny Rainy **Overcast** Yes Temp Temp Chilly Warm Chilly/ Warm. Yes No Hot No Yes

Which tree is better?

Design issues

What attribute to select at each step for splitting?

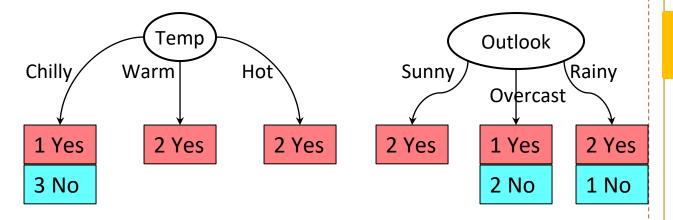


- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues

Best splitting attribute

Best splitting attribute: intuition

 Select attribute which divides records into most class-homogenous groups – into nodes with the highest possible purity

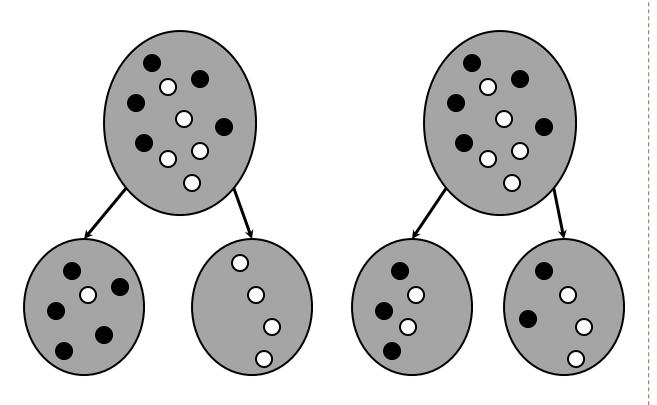


- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues

Best splitting attribute

Purity

Which split is better?

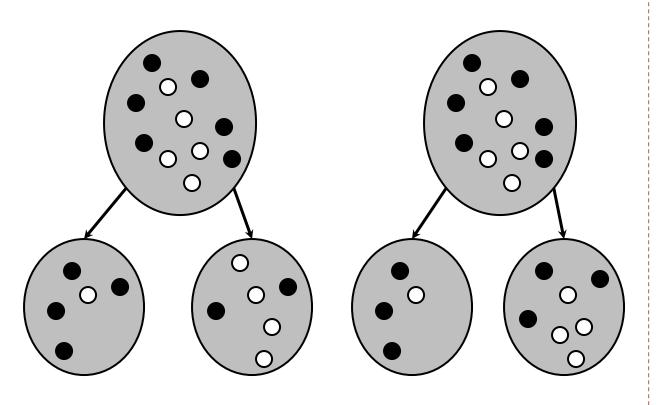


- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues

Best splitting attribute

Purity

And now?



- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues

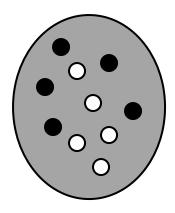
Best splitting attribute

 Applications of decision trees

We need a measure of node purity

Purity measure: GINI score

 The probability that two items chosen at random are in the same class: the sum of squares of the proportions of the classes



A node with evenly mixed classes has GINI: $0.5^2+0.5^2=0.5$

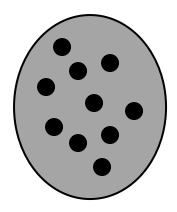
The chance of picking the same class twice by random selection is: the probability of picking 2 white dots twice (0.5^2) or picking 2 black dots twice (0.5^2) .

- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues

Best splitting attribute

Purity measure: GINI score

 The probability that two items chosen at random are in the same class: the sum of squares of the proportions of the classes

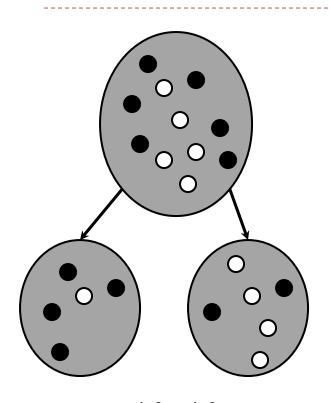


A node with one homogenous class has GINI: 1.0 (The chance of picking the same class twice is 100%)

- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues

Best splitting attribute

Best split with GINI score



 $GINI(1,4)=1/5^2+4/5^2=0.04+0.64=0.68$

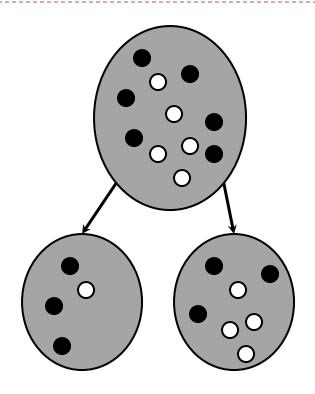
 $GINI(2,4)=2/6^2+4/6^2=0.11+0.44=0.55$

We take a *weighted average*: 5/11*0.68 + 6/11*0.55=0.31+0.3=0.61

- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues

Best splitting attribute

Best split with GINI score



 $GINI(3,1)=3/4^2+1/4^2=0.56+0.06=0.62$

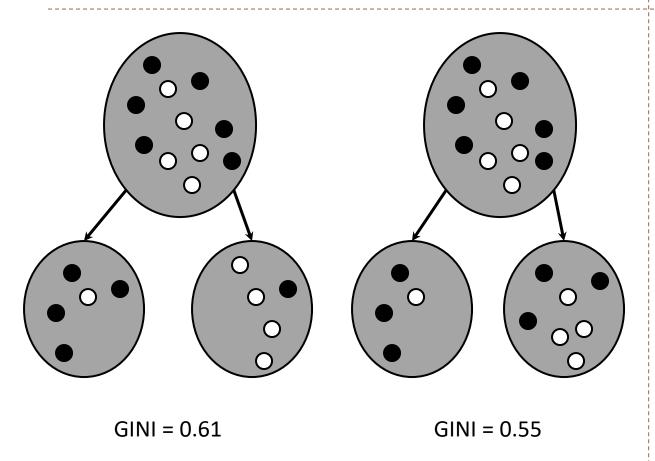
 $GINI(3,4)=3/7^2+4/7^2=0.18+0.33=0.51$

We take a *weighted average*: 4/11*0.62 + 7/11*0.51=0.23+0.32=0.55

- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues

Best splitting attribute

Comparing average GINI scores

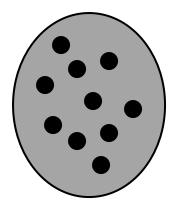


- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues

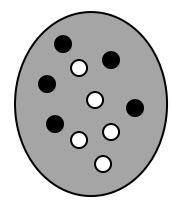
Best splitting attribute

Purity measure: *Entropy*

 In information theory entropy is a measure of how disorganized the information is



A node with one homogenous class has entropy: 0 (very organized)



A node with evenly mixed population has the largest entropy: 1.0 (most disorganized)

- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues

Best splitting attribute

Bits

- We are watching a sequence of independent random samples of X
- We see that X has four possible values

$$P(X=A) = 1/4$$
 $P(X=B) = 1/4$ $P(X=C) = 1/4$ $P(X=D) = 1/4$

- So we might see: BAACBADCDADDDA...
- We transmit data over a binary serial link.
- We can encode each symbol with two bits (e.g. A=00, B=01, C=10, D = 11)

01000010010011101100111111100...

Fewer Bits

Someone tells us that the probabilities are not equal

P(X=A) = 1/2	P(X=B) = 1/4	P(X=C) = 1/8	P(X=D) = 1/8

It's possible...

...to invent an encoding for your transmission that only uses 1.75 bits on average per symbol.

Α	0
В	10
С	110
D	111

Here is one.

General Case

Suppose X can have one of m values...

$$P(X=V_1) = p_1$$
 $P(X=V_2) = p_2$ $P(X=V_m) = p_m$

 What's the smallest possible number of bits, on average, per symbol, needed to transmit a stream of symbols drawn from X's distribution? It's

$$entropy(p_1,...,p_m) = -p_1 \log_2 p_1 - ... p_m \log_2 p_m$$

 Well, Shannon got to this formula by setting down several desirable properties for uncertainty, and then finding it.

Tree node entropy

Suppose class attribute X in a given tree node occurs in the following proportions

$$P(X=V_1) = p_1$$
 $P(X=V_2) = p_2$ $P(X=V_m) = p_m$

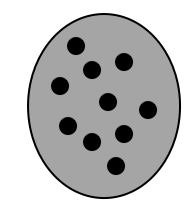
 By finding entropy of the node, we evaluate how many bits are needed to encode this node

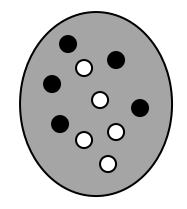
$$entropy(p_1,...,p_m) = -p_1 \log_2 p_1 - ... p_m \log_2 p_m$$

 The smaller the number of bits to encode the entire tree, the better: the minimum description length (MDL) principle

Computing entropy of a node

Compute entropy of a node





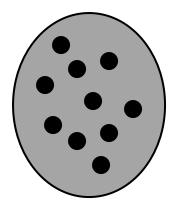
Entropy(10,0)= -10/10*log (10/10)-0*log (0) =0

=0 in this formula

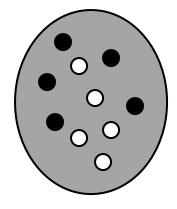
- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues

Best splitting attribute

Computing entropy of a node



Entropy(10,0)=0

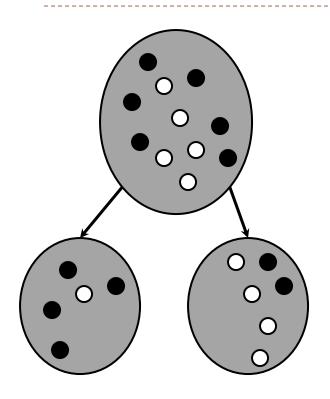


Entropy(5,5)=
-5/10*log 5/10 -5/10*log(5/10)
=1

- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues

Best splitting attribute

Best split with Entropy reduction



Entropy $(4,1)=-4/5 \log 4/5-1/5 \log 1/5=0.26+0.46=0.72$

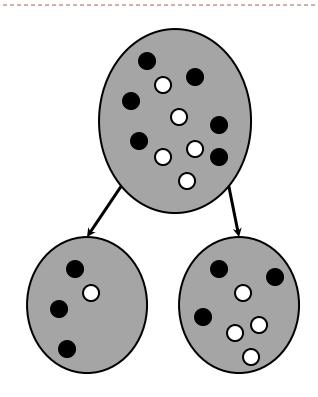
Entropy(2,4)=-2/6 log 2/6 - 4/6 log 4/6=0.53+0.39=0.92

We take a *weighted average*: 5/11*0.72 + 6/11*0.92=0.33+0.5=0.83

- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues

Best splitting attribute

Best split with Entropy reduction



Entropy(3,1)=-3/4 log 3/4-1/4 log 1/4= 0.31+0.5=0.81

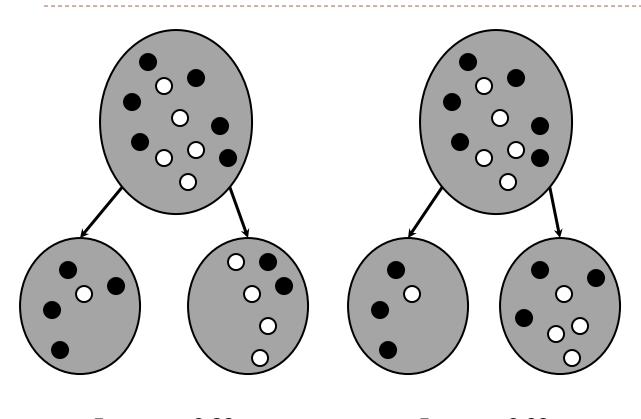
Entropy(3,4)= $-3/7 \log 3/7 - 4/7 \log 4/7 = 0.52 + 0.46 = 0.98$

We take a *weighted average*: 4/11*0.81 + 7/11*0.98=0.295+0.63=0.92

- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues

Best splitting attribute

Comparing average entropies



- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues

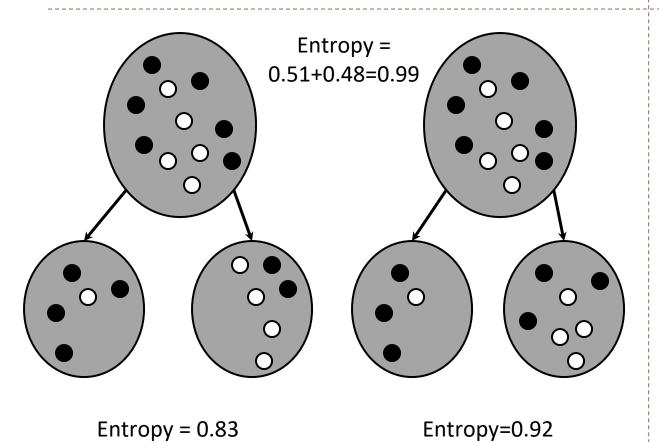
Best splitting attribute

 Applications of decision trees

Entropy = 0.83

Entropy=0.92

Entropy reduction or information gain



- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues

Best splitting attribute

 Applications of decision trees

In this case, it might be better not to split at all, since the information gain is small

To split or not to split?

- Not to split: when the node consists of elements of the same class
- Not to split: when the node consists of elements which have the same attribute values, except the class attribute
- Not to split: when there is no information gain (no reduction in entropy). Not to split when information gain is insignificant

- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues
 - Best splitting attribute

When to stop splitting

Full tree induction algorithm

- Step 1. Compute entropy of the instances in the current set with respect to class label (in the beginning – on the entire dataset).
- Step 2. For each attribute, compute information gain and select the attribute which gives maximum information gain.
- Step 3. Create a node with the selected attribute and create branch for each possible attribute value. Split instances into subsets according to this value.
- Step 4. For each subset:
 - If no split is possible, create leaf node and mark it with the majority class
 - Else go to Step 1

- Decision trees
- Supervised learning
 - Tree induction algorithm
- Algorithm design issues
 - Best splitting attribute
 - When to stop splitting
- Applications of decision trees

Example: tax cheating dataset

ID	Refund	Marital status	Taxable income	Cheat
1	Yes	Single	125 K	No
2	No	Married	100 K	No
3	No	Single	70 K	No
4	Yes	Married	120 K	No
5	No	Divorced	95 K	Yes
6	No	Married	60 K	No
7	Yes	Divorced	220 K	No
8	No	Single	85 K	Yes
9	No	Married	105 K	No
10	No	Single	110 K	Yes

- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues
 - Best splitting attribute
 - When to stop splitting

Categorizing numeric features

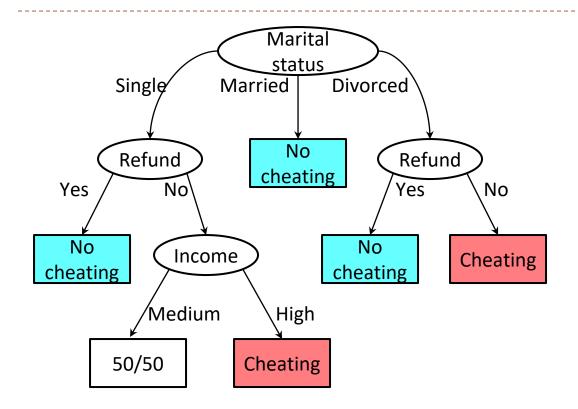
$>=100K \rightarrow high$
<100K → medium

ID	Refund	Marital status	Taxable income	Cheat
1	Yes	Single	high	No
2	No	Married	high	No
3	No	Single	medium	No
4	Yes	Married	high	No
5	No	Divorced	medium	Yes
6	No	Married	medium	No
7	Yes	Divorced	high	No
8	No	Single	medium	Yes
9	No	Married	high	No
10	No	Single	high	Yes

- Decision trees
- Supervised learning

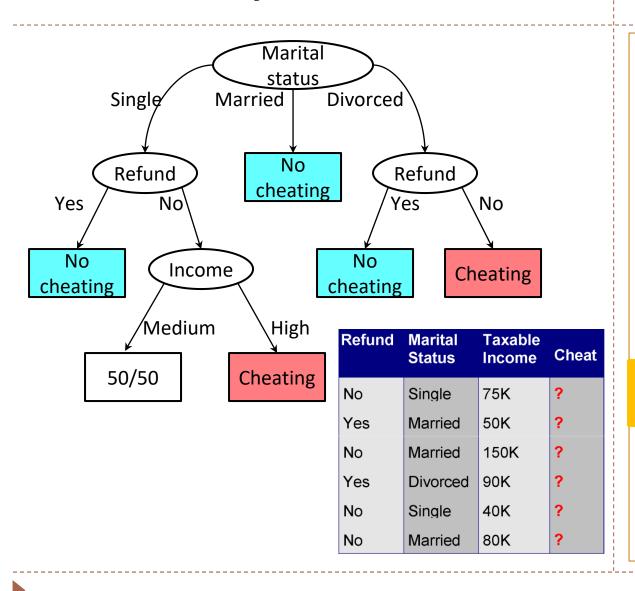
- Algorithm design issues
 - Best splitting attribute
 - When to stop splitting
- Applications of decision trees

Decision tree for tax cheating dataset



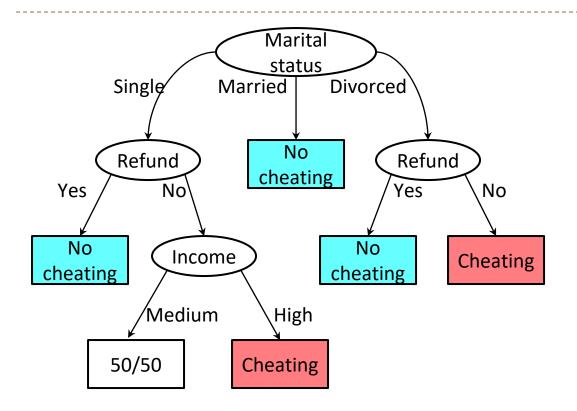
- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues
 - Best splitting attribute
 - When to stop splitting

Classify new records



- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues
 - Best splitting attribute
 - When to stop splitting

Identify the most important features



The most important features are at the top of the tree

- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues
 - Best splitting attribute
 - When to stop splitting

When to use decision tree classifier

Use decision trees

- The factors of the decision are not less important than the classification accuracy
- Attributes with nominal values (not numeric) and with low cardinality*
- Categorical class labels with low cardinality*
- There is a set of objective rules underlying the data

Use something else

- Continuous numeric attributes, ordinal attributes
- Hierarchical relationships between classes
- High-cardinality attributes
- Numeric value prediction

- Decision trees
- Supervised learning
- Tree induction algorithm
- Algorithm design issues
 - Best splitting attribute
 - When to stop splitting

^{*}cardinality - the number of possible distinct values